Analiza widmowa złożonych substancji chemicznych

Autor:         mgr inż.  Jędrzej Pęziak

Promotor:    dr inż. Dominik Łuczak

Praca dyplomowa magisterska. Studia stacjonarne.

 

Niniejsza praca opisuje próbę rozwiązania problemu obliczenia stężeń substancji zawartych w mieszaninie chemicznej na podstawie ich analizy widmowej. Wykorzystano dwa algorytmy  – metodę nieliniową najmniejszych kwadratów oraz sztuczne sieci neuronowe.

Wzrost stężenia danej substancji w mieszaninie sprawiał, że krzywa widmowa zmieniała swój kształt (głównie amplitudę, ale także szerokość). Przykład wszystkich rozpatrywanych krzywych dla równego stężenia rzędu 1% zaprezentowany jest na Rys. 1. W rzeczywistości, wszystkie te krzywe dawałyby w wyniku jedną, której punkty odpowiadałyby sumie punktów krzywych składowych. Właśnie ta właściwość – superpozycja – pozwoliła na rozwiązanie tego problemu. Idea superpozycji przedstawiona jest na Rys. 2.

 

Rys. 1. - Badane krzywe widmowe

Rys. 2. – Przykład superpozycji trzech widm

 

Metoda nieliniowa najmniejszych kwadratów polegała na wykorzystaniu krzywych widmowych dla stężeń równych 1% jako referencyjnych. Znając model, który był sumą tych krzywych (superpozycją) starano się ustalić stężenia składowych substancji, wiedząc, że model pojedynczej substancji powinien liniowo rosnąć wraz z jej rosnącym stężeniem. Okazało się, niestety, że model rzeczywisty posiada nieliniowości (Rys. 3) i metoda podawała wyniki z dużym błędem.

 

Rys. 3. - Wpływ rosnącego stężenia na nieliniowy model przykładowej substancji

 

Druga metoda – sztucznych sieci neuronowych polegała na wygenerowaniu krzywych kalibracyjnych dla każdej substancji (na przykład dla stężeń od 0% do 100% z krokiem 10%) i utworzeniu sum matematycznych z tych danych. Pozwalało to na uzyskanie danych dla zestawu sieci neuronowych (idea działania zestawu sieci na Rys. 4).  Danymi docelowymi były wartości stężeń substancji, dla której aktualnie uczymy sieć. Danymi uczącymi, natomiast, odpowiadające tym stężeniom punkty krzywej widma. Ta metoda okazała się dobra zarówno dla założenia liniowej zmiany amplitudy jak i rzeczywistych nieliniowości.

 

Rys. 4. - Idea działania nauczonych sieci

 

Praca dodatkowo zawiera omówienie próby odszumienia danych, w celu poprawienia uzyskiwanych wyników. W Tab. 1 zestawiono wyniki obliczonych błędów, które równe są średniej arytmetycznej różnicy wartości stężeń referencyjnych i obliczonych. Wyniki w Tab. 1 obliczone są na podstawie odszumionego modelu rzeczywistego (nieliniowego pod kątem przyrostu stężeń). Błąd procentowy obliczony został dla nieliniowej metody najmniejszych kwadratów (NMNK) przy krzywej wzorcowej składającej się z wszystkich dostępnych danych oraz przy próbie redukcji liczby danych (liczby punktów w widmie referencyjnym) oraz dla sztucznych sieci neuronowych (ANN) podobnie jak w poprzedniej metodzie. Sieci neuronowe zostały sprawdzone także pod kątem dwóch metod uczenia – Levenberga-Marquardta (LM) oraz Bayesa (B). Błędy powstałe podczas testów metodą sieci neuronowych są najmniejsze. Znaczny błąd dla niskich stężeń wynika z faktu, że niektóre rodzaje szumu nie skalowały się wraz z amplituda krzywej widmowej.

 

Tab. 1. - Uzyskane wyniki dla badanych metod

Metoda

 

Stężenie

NMNK

Wszystkie dane

NMNK

Część danych

ANN wszystkie dane

ANN część danych

LM

B

LM

B

Model nieliniowy odszumiony

1%

410.8794

74.2870

4.9543

11.9772

6.9337

5.1069

15%

28.9123

11.2601

0.2611

1.2940

0.4646

1.3062

75%

39.8108

47.2683

2.0405

1.9921

3.2544

5.8541

 

 

 

 

 

 


Drukuj  

Kierownik ZSEP
dr hab. inż. Tomasz Pajchrowski
Tomasz.Pajchrowski@put.poznan.pl
nr tel. +48 61 665 2385
Adres korespondencyjny:
IRm PP, ul. Piotrowo 3a, 60-965 Poznań

Free Joomla! templates by Engine Templates