DC Motor drives

Dr inż. Dariusz Janiszewski

Plan

- Introduction
- Equivalent Circuit of DC Motors
 - PM Motors
 - Separately excited Field Winding
- Armature CurrentWaveform
- DC Servo Drives

DC-Motor Structure

With permanent magnets or a wound field

DC-Motor Equivalent Circuit

$$J_L \frac{d\omega}{dt} = T_{em} - T_{WL}$$

The mechanical system can also be represented as an electrical circuit

Four-Quadrant Operation of DC-Motor Drives

High performance drives may operate in all four quadrants

DC-Motor Drive Torque-Speed Characteristics and Capabilities

With permanent magnets

DC-Motor Drive Capabilities

Separately-Excited field

Controlling Torque, Speed and Position

Cascaded control is commonly used

Small-Signal Representation of DC Machines

Around a steady state operating point

Electrical Time-Constant of the DC Machine

The speed is assumed constant

Mechanical Time-Constant of the DC Machine

The load-torque is assumed constant

 If a diode-rectifier is used, the energy recovered during regenerative braking is dissipated in a resistor

Ripple in the Armature Current bipolar and unipolar voltage switching

Voltage Control of Servo Drives

Current Control of Servo Drives

Effect of Blanking Time

Non-linearity is introduced

Effect of Discontinuous Current Conduction

Speed goes up unless it is controlled!!!

Converters for Limited Operational Capabilities

Two switches for 2-quadrant operation and only one switch for 1quadrant operation

Line-Controlled Converters for DC Drives

Large low-frequency ripple in the dc output of converters

Four Quadrant Operation using Line Converters

Two options to achieve 4-quadrant operation

DC Drive Characteristics and Capabilities

 Line current (fund freq.) in switch-mode (b) line-converter drives (c)

Open-Loop Speed Control

Adequate for general-purpose student applications

TI DRV8848

Dual H-Bridge Motor Driver

- Single/Dual Brushed DC
- Stepper

PWM Control Interface

Optional Current Regulation With 20-µs Fixed Off-Time

0.1 µF

High Output Current per H-Bridge

- 2-A Maximum Driver Current at 12 V and T_A = 25°C
- Parallel Mode Available Capable of 4-A Maximum Driver Current at 12 V and T_A = 25°C

4- to 18-V Operating Supply Voltage Range Low-Current 3-μA Sleep Mode

Thermally-Enhanced Surface Mount Package

Protection Features

Nount Package

- VM Undervoltage Lockout (UVLO)
- Overcurrent Protection (OCP)
- Thermal Shutdown (TSD)
- Fault Condition Indication Pin (nFAULT)

TI DRV8848

TI DRV 8808

Three DC Motor Drivers

- Up to 2.5-A Current Chopping
- Low Typical ON Resistance ($R_{DSON} = 0.5 \Omega$ at $T_J = 25$ °C)

Three Integrated DC-DC Converters

- ON/OFF Selectable Using CSELECT Pin and Serial Interface
- Outputs Configurable With External Resistor Network From 1 V to 90% of V_M Capability for All Three Channels
- 1.35-A Output Capability for All Three Channels

One Integrated LDO Regulator

- Output Configurable With External Resistor Network from 1 V to 2.5 V
- 550-mA Output Capability

7-V to 40-V Operating Range

Serial Interface for Communications

Thermally-Enhanced Surface-Mount Package

48-Pin HTSSOP With PowerPAD™

(Eco-Friendly: RoHS and No Sb/Br)
Power-Down Function (Deep-Sleep Mode)

Reset Signal Output (Active Low)

Reset (All Clear) Control Input

L298

- OPERATING SUPPLY VOLTAGE UP TO 46 V
- TOTAL DC CURRENT UP TO 4 A
- LOW SATURATION VOLTAGE
- OVERTEMPERATURE PROTECTION
- LOGICAL "0" INPUT VOLTAGE UP TO 1.5 V (HIGH NOISE IMMUNITY)

L298

L293

ST L6207

- Operating supply voltage from 8 to 52 V
- 5.6 A output peak current
- $R_{DS(on)}$ 0.3 Ω typ. value at T_j = 25 °C
- Operating frequency up to 100 kHz
- Non-dissipative overcurrent protection

Dual independent constant t_{OFF} PWM current controllers

- Slow decay synchronous rectification
- Cross conduction protection
- Thermal shutdown
- Undervoltage lockout
- Integrated fast freewheeling diodes

ST L6207 PWM current controller

Homework

▶ L298 microcontrollers applications

...