Energoelektronika

7. Switch-Mode DC- Sinusoidal AC Inverters

dr inż. Dariusz Janiszewski

Plan

- Wprowadzenie do przetwornic DC-AC
- Koncepcja przetwornicy impulsowej falownika
- Falownik jednofazowy
- Falownik trójfazowy
- Wpływ czasu martwego
- Inne falowniki
- Praca prostownikowa falownika

Switch-Mode DC-AC Inverter unidirectional

Switch-Mode DC-AC Inverter bidirectional

Standard adjustable speed drive scheme

Switch-Mode DC-AC Inverter

Four quadrants of operation

One Leg of a Switch-Mode DC-AC Inverter

The mid-point shown is fictitious

Synthesis of a Sinusoidal Output by PWM

Details of a Switching Time Period

Control voltage can be assumed constant during a switching time-period

Output voltage Fundamental as a Function of the Modulation Index

Shows the linear and the over-modulation regions; square-wave operation in the limit

Harmonics in the DC-AC Inverter Output Voltage

Table 8-1 Generalized Harmonics of v_{Ao} for a Large m_f .

m_a					_	
h	0.2	0.4	0.6	0.8	1.0	
1	0.2	0.4	0.6	0.8	1.0	
Fundamental						
m_f	1.242	1.15	1.006	0.818	0.601	
$m_f \pm 2$	0.016	0.061	0.131	0.220	0.318	
$m_f \pm 4$					0.018	
$2m_f \pm 1$	0.190	0.326	0.370	0.314	0.181	
$2m_f \pm 3$		0.024	0.071	0.139	0.212	
$2m_f \pm 5$				0.013	0.033	
$3m_f$	0.335	0.123	0.083	0.171	0.113	
$3m_f \pm 2$	0.044	0.139	0.203	0.176	0.062	
$3m_f \pm 4$		0.012	0.047	0.104	0.157	
$3m_f \pm 6$				0.016	0.044	
$\frac{1}{4m_f \pm 1}$	0.163	0.157	0.008	0.105	0.068	
$4m_f \pm 3$	0.012	0.070	0.132	0.115	0.009	
$4m_f \pm 5$			0.034	0.084	0.119	
$4m_f \pm 7$				0.017	0.050	

Note: $(\hat{V}_{Ao})_h / \frac{1}{2} V_d = (\hat{V}_{AN})_h / \frac{1}{2} V_d$ is tabulated as a function of m_a .

 $3m_f$ $(3m_f + 2)$

Harmonics h of $f_1 \longrightarrow$

107

Harmonics due to Over-modulation

These are harmonics of the fundamental frequency

Square-Wave Mode of Operation

Harmonics are of the fundamental frequency

Half-Bridge / Full-Bridge Inverter

Capacitors provide the mid-point Consists of two inverter legs

PWM to Synthesize Sinusoidal Output

- The dotted curve is the desired output; also the fundamental frequency
- Bipolar voltage switching

Analysis assuming Fictitious Filters

Small fictitious filters eliminate the switching-frequency related ripple

DC-Side Current

Bi-Polar Voltage switching

Output Waveforms: Uni-polar Voltage Switching

DC-Side Current in a Single-Phase Inverter

Uni-polar voltage switching

Bipolar and Unipolar Current Ripple

Harmonic Components during Bi-polar / Uni-polar Voltage Switching

Bi-Polar

Uni-Polar

Harmonic components around the switching frequency are absent in UP!

Sinusoidal Synthesis by Voltage Shift

Phase shift allows voltage cancellation to synthesize a <u>1-Phase</u> sinusoidal output

(6)

24

Voltage Ripple Single-Phase Inverter

Analysis at the fundamental frequency

Voltage/Current Ripple Square-Wave and PWM Operation

PWM results in much smaller ripple current

Push-Pull Inverter

Low Voltage to higher output using square-wave operation

Three-Phase Inverter

Three inverter legs; capacitor mid-point is fictitious

Three-Phase PWM Waveforms

Three-Phase Inverter Harmonics

m_a	•				
<u>h</u>	0.2	0.4	0.6	0.8	1.0
1	0.122	0.245	0.367	0.490	0.612
$m_f \pm 2$	0.010	0.037	0.080	0.135	0.195
$m_f \pm 4$				0.005	0.011
$2m_f \pm 1$	0.116	0.200	0.227	0.192	0.111
$2m_f \pm 5$				0.008	0.020
$3m_f \pm 2$	0.027	0.085	0.124	0.108	0.038
$3m_f \pm 4$		0.007	0.029	0.064	0.096
$4m_f \pm 1$	0.100	0.096	0.005	0.064	0.042
$4m_f \pm 5$			0.021	0.051	0.073
$4m_f \pm 7$				0.010	0.030

Note: $(V_{LL})_h/V_d$ are tabulated as a function of m_a where $(V_{LL})_h$ are the rms values of the harmonic voltages.

Three-Phase Inverter Output

- Linear
- over-modulation ranges

Three-Phase Inverter: Square-Wave Mode

Harmonics are of the fundamental frequency

Three-Phase Inverter: Fundamental Frequency

Analysis at the fundamental frequency can be done using phasors

Voltage and Current Ripple Square-Wave and PWM Operation

PWM results in much smaller ripple current

DC-Side Current in a Three-Phase Inverter

The current consists of a dc component and the switching-frequency related harmonics

Device Conducting Square-Wave Operation

Device Conducting PWM Operation

Short-Circuit States in PWM Operation

top group or the bottom group results in short circuiting three terminals

Results in nonlinearity

Effect of Blanking Time (Dead-Time)

Voltage jump when the current reverses direction

Effect of Blanking Time (Dead-Time)

Effect on the output voltage

Programmed Harmonic Elimination

Angles based on the desired output

Tolerance-Band Current Control

Results in a variable frequency operation

Fixed-Frequency Operation

Better control is possible using dq analysis!!!

Transition from Inverter to Rectifier Mode

Can analyze based on the fundamental-frequency

Transition from Inverter to Rectifier Mode

Functional representation in a blockdiagram form of DC-AC Inverters

$$k = 0.9$$
 1-phase = 0.78 3-phase

3-phase

Space-Vector Transformation

Space-Vector Modulation

Space-Vector Modulation Phase Voltage

Recovered/Regenarive breaking

Induction Motor Power Converter

DC motor drive

Homework